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Abstract
Sparse code division multiple access (CDMA), a variation on the standard
CDMA method in which the spreading (signature) matrix contains only a
relatively small number of nonzero elements, is presented and analysed using
methods of statistical physics. The analysis provides results on the performance
of maximum likelihood decoding for sparse spreading codes in the large system
limit. We present results for both cases of regular and irregular spreading
matrices for the binary additive white Gaussian noise channel (BIAWGN) with
a comparison to the canonical (dense) random spreading code.

PACS numbers: 64.60.Cn, 75.10.Nr, 84.40.Ua, 89.70.+c
Mathematics Subject Classification: 68P30, 82B44, 94A12, 94A14

1. Background

The area of multiuser communications is one of great interest from both theoretical and
engineering perspectives [1]. Code division multiple access (CDMA) is a particular method
for allowing multiple users to access channel resources in an efficient and robust manner, and
plays an important role in the current preferred standards for allocating channel resources in
wireless communications. CDMA utilizes channel resources highly efficiently by allowing
many users to transmit on much of the bandwidth simultaneously, each transmission being
encoded with a user-specific signature code. Disentangling the information in the channel is
possible by using the properties of these codes, and much of the focus in CDMA research is
on developing efficient codes and decoding methods.

In this paper we study a variant of the original method, sparse CDMA, where the spreading
matrix contains only a relatively small number of nonzero elements as was originally studied
and motivated in [2]. While the straightforward application of sparse CDMA techniques to
uplink multiple access communication is rather limited, as it is difficult to synchronize the
sparse transmissions from the various users, the method can be highly useful for frequency
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and time hopping. In frequency-hopping code division multiple access (FH-CDMA), one
repeatedly switches frequencies during radio transmission, often to minimize the effectiveness
of interception or jamming of telecommunications. At any given time step, each user occupies
a small (finite) number of the (infinite) M-ary frequency-shift-keying (MFSK) chip/carrier
pairs (with gain G, the total number of chip-frequency pairs is MG.) Hops between available
frequencies can be either random or preplanned and take place after the transmission of data on
a narrow frequency band. In time-hopping (TH-)CDMA, a pseudo-noise sequence defines the
transmission moment for the various users, which can be viewed as sparse CDMA when used
in an ultra-wideband impulse communication system. In this case the sparse time-hopping
sequences reduces collisions between transmissions.

This study follows the seminal paper of Tanaka [3], and other recent extensions [4],
in utilizing the replica analysis for randomly spread CDMA with discrete inputs, which
established many of the properties of random densely spread CDMA with respect to several
different detectors including maximum a posteriori (MAP), marginal posterior maximizer
(MPM) and minimum mean square error (MMSE). Sparsely spread CDMA differs from the
conventional CDMA, based on dense spreading sequences, in that any user only transmits
to a small number of chips (by comparison to transmission on all chips in the case of dense
CDMA). The sparse nature of this model facilitates the use of methods from statistical physics
of dilute disordered systems [5, 6] for studying the properties of typical cases.

The feasibility of sparse CDMA for transmitting information was recently demonstrated
[2] for the case of real (Gaussian distributed) input symbols by employing a Gaussian effective
medium approximation; several results have been reported for the case of random transmission
patterns. In a separate recent study, based on the belief propagation inference algorithm and a
binary input prior distribution, sparse CDMA has also been considered as a route to proving
results in the densely spread CDMA [7]. In addition, this study demonstrated the existence of a
waterfall phenomenon comparable to the dense code for a subset of ensembles. The waterfall
phenomenon is observed in decoding techniques, where there is a dynamical transition between
two statistically distinct solutions as the noise parameter is varied. Finally, we note a number
of pertinent studies concerning the effectiveness of belief propagation as an MPM decoding
method [8–11], and in combining sparse encoding (LDPC) methods with CDMA [12]. Many
of these papers however consider the ‘extreme dilution’ regime in which the number of chip
contributions is large but not O(N).

The theoretical work regarding sparsely spread CDMA remained lacking in certain
respects. As pointed out in [2], spreading codes with Poisson-distributed number of nonzero
elements, per chip and across users, are systematically failing in that each user has some
probability of not contributing to any chips (transmitting no information). Even in the ‘partly
regular’ code [7] ensemble (where each user transmits on the same number of chips) some chips
have no contributors owing to the Poisson distribution in chip connectivity; consequently the
bandwidth is not effectively utilized. We circumvent this problem by introducing constraints
to prevent this, namely taking regular signature codes constrained such that both the number
of users per chip and chips per user take fixed integer values. Furthermore, we present
analytic and numerical analysis without resort to Gaussian approximations of any quantities.
Using new tools from statistical mechanics we are able to cast greater light on the nature of
the binary prior transmission process. Notably the nature of the decoding state space and
relative performance of sparse ensembles versus dense ones across a range of noise levels and
importantly, the question of how the coexistence of solutions found by Tanaka [3] extends to
sparse ensembles, especially close to the transition points determined for the dense ensemble.

In this paper we demonstrate the superiority of regular sparsely spread CDMA code over
densely spread codes in certain respects; for example, the anticipated bit-error rate arising
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in decoding is improved in the high noise regime and the solution coexistence behaviour is
less pervasive. Furthermore, to utilize belief propagation for such an ensemble is certain
to be significantly faster and less computationally demanding [13], this also has power-
consumption implications which may be important in some applications. Other practical
issues of implementation, the most basic being non-synchronization and power control, require
detailed study and may make fully harnessing these advantages more complex and application
dependent.

The paper is organized as follows. In section 2 we will introduce the general framework
and notation used, while the methodology used for the various codes will be presented in
section 3. The main results for the various codes will be presented in section 4 followed by
concluding remarks in section 5.

2. The model

We consider a standard model of CDMA consisting of K users transmitting in a bit interval of
N chips. We assume a model with perfect power control and synchronization, and consider
only the single bit interval. In our case the received signal y is described by

y =
K∑

k=1

[skbk] + ω, (1)

where the vector components describe the values for distinct chips: sk is the spreading code
for user k, bk = ±1 is the bit sent by user k (binary input symbols) and ω is the noise vector.
Appropriate normalization of the power is through the definition of the signature matrix (s). It
is possible to include a user- or chip-specific amplitude variation, which may be due to fading
or imperfect power control. We consider a model without these effects. The spreading codes
are sparse so that in expectation only C of the elements in vector sk are nonzero. If, with
knowledge of the signature matrix in use, we assume the signal has been subject to additive
white Gaussian channel noise of variance σ 2

0

/
β, where σ 2

0 is the variance of the true channel
noise 〈ω2〉, we can write the posterior for the transmitted bits τ (unknowns given the particular
instance) using Bayes theorem

P(τ |y) =
N∏

µ=1

 √
β√

2πσ 2
exp

− β

2σ 2
0

(
K∑

k=1

[sµk(bk − τk)] + ωµ

)2
P(τ ), (2)

and from this define bit-error rate, mutual information and other quantities. The statistical
mechanics approach from here is to define a Hamiltonian and partition function from which
the various statistics relating to this probability distribution may be determined, and hence all
the usual information theory measures. A suitable choice for the Hamiltonian is

H(τ ) =
N∑

µ=1

1

2σ 2
0

(
K∑

k=1

[sµk(bk − τk)] + ωµ

)2

+
K∑

k=1

hkτk. (3)

We can here identify τ as the dynamical variables in the inference problem (dependence shown
explicitly). The other quenched variables (parameters), describing the instance of the disorder,
are the signature matrix (s), noise (ω) and the inputs (b). The variables hk describe our prior
beliefs about the inputs (the specific user bias), and we can assume some simple distribution
for this such as all users having the same bias hk = H . Maximal rate transmission corresponds
to unbiased bits H = 0, and this is considered throughout the paper. The properties of such a
system may be reflected in a factor (Tanner) graph, a bipartite graph in which users and chips
are represented by nodes (see figure 1).
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Figure 1. A bi-partite graph is useful for visually realizing a problem. A user node i at the bottom
interacts with other variables through its set of neighbouring factor nodes (∂i) to which it connects.
The factor nodes are determined through a similar neighbourhood. The interaction at each factor
(µ) is conditioned on neighbouring gain factors ξµ (the nonzero components of s), and yµ (which is
an implicit function of the noise ωµ, and neighbouring input bits bµ and gain factors ξµ), assuming
a uniform prior on the bits. The statistical mechanics reconstruction problem associates dynamical
variables τ to the user nodes that interact through the factors. The thermodynamical equilibrium
state of this system then describes the theoretical performance of optimal detectors.

The calculation we undertake is specific to the case of the thermodynamic limit in which
the number of chips N → ∞, whilst the load α = K/N is fixed. Note that α is termed β

in many CDMA papers; here we reserve β to mean the ‘inverse temperature’ in a statistical
mechanics sense (which defines our prior belief for the noise level and give rise to the
corresponding MAP detector.)

In all ensembles we may identify the parameter L as the mean number of contributions
to each chip, and C as the mean number of contributions per user. As such the following also
holds:

α = K

N
= L

C
. (4)

The case in which α is greater than 1 will be called over-saturated, since more than one bit is
being transmitted per chip.

The calculations presented henceforth are specific to the case of memoryless noise, drawn
from a single distribution of mean zero and mean square σ 2

0 ,

�(ω) = P(ωµ = ω).

Defining normalized spreading codes such that
∑

k sk · sk = N , we can identify the ‘power
spectral density’ (PSD) over a chip interval as a measure of the system noise 1

/(
2σ 2

0

)
—the

factor 2 being connected with physical considerations in implementing the model.

2.1. Code ensembles

We consider several code ensembles we call irregular, partly regular and regular, which differ
in the constraints placed on the factor and variable degree constraints of the signature matrix
s. The probability distribution

P(s) = N

∏
µ

〈
L̃!

LL̃
δ

(∑
k

δ(sµk �= 0) − L̃

)〉
P(L̃)


×
∏

k

〈
C̃!

CC̃
δ

(∑
µ

δ(sµk �= 0) − C̃

)〉
P(C̃)

∏
µ

∏
k

P (sµ,k), (5)
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where N is a normalizing constant, P(L̃) is the factor degree probability distribution of mean
L,P (C̃) is the variable degree probability distribution of mean C and P(sµk) is the marginal
probability distribution which is common to all ensembles

P(sµk) =
(

1 − C

N

)
δ(sµk) +

C

N
δ(sµk − ξ). (6)

The form of (5) is then sufficient for the sparse distributions we consider in the large system
limit, and makes explicit the chip and user connectivity properties of the ensembles. The gain
factor, ξ , is drawn randomly from a single distribution with zero measure at ξ = 0, and finite
moments, in any instance of a code

φ(ξ) = P(sµk = ξ |sµk �= 0). (7)

Unlike the dense case the details of this distribution will effect results, but only in a small
way for reasonable choices [2]. We here investigate the case of binary phase-shift keying
(BPSK) which corresponds to a uniform distribution on

{− 1√
L
, 1√

L

}
, though the analytic

results presented are applicable to any distribution of mean square = 1/L. Note that disorder
in the gain factors is not a necessity, the case ξ = 1/

√
L also allows decoding in sparse

ensembles.
The case where P(L̃) and P(C̃) are Poissonian distributed identifies the irregular

ensemble, where the connections between chips and users are independently distributed.
The second distribution called partly regular has P(C̃) = δC,C̃ , in which the chip connectivity
is again Poisson distributed with mean L, but each user contributes to exactly C chips. This
prevents the systematic failure inherent in the irregular ensemble since therein an extensive
number of users fail to transmit on any chips. If in addition to the aforementioned constraint
all chips receive exactly L contributions, P(L̃) = δL,L̃, the ensemble is called regular. Regular
chip connectivity amongst other things prevents the systematic inefficiency due to leaving
some chips unaccessed by any of the users. The case of Poissonian distributions is that
in which there is no global control. In many engineering applications constraining users
individually (non-Poissonian P(C̃)) is practical, whereas coordination between users (non-
Poissonian P(L̃)) is difficult. The practicalities of implementing the different ensembles we
consider are application specific: the advantages inherent in distributing channel resources
more evenly amongst users may be lost to practical implementation problems.

3. Methodology

3.1. Spectral efficiency lower bound

The inferiority of codes with Poissonian user connectivity has been pointed out previously (e.g.,
in [2]), based on the understanding that codes which leave a portion of the users disconnected
cannot be optimal. Analogously we argue that codes with irregular chip connectivity must
also be inferior in that they leave a fraction of the chips (bandwidth) unutilized, thus providing
a motivation for considering fully regular codes.

In this section we show a particular case in which the regular codes are expected to
outperform any other ensemble by analysing the amount of information that can be extracted
on the sent bits by consideration of only one chip in isolation of the other chips. This
corresponds to a detector reconstructing bits based only on the value of a single chip, and is
independent of the user connectivity.
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The spectral efficiency is defined as the mutual information between the received signal
and reconstructed bits per chip. In considering only a single chip (µ) we have

I (τ ; yµ) =
〈
log2

P(τ |yµ)

P (τ )

〉
P0(τ ,yµ)

, (8)

where the subscript zero indicates that the true (generative), rather than model (2), probability
distribution. For brevity we consider the simplest case that the generative and model probability
distributions are the same with unbiased bits and a Gaussian noise distribution in which case
after some rearrangement

I (τ ; yµ) = L̃ −
〈
log2

exp(−Hµ(τµ))∑
τµ exp(−Hµ(τµ))

〉
P0(τ ,yµ)

, (9)

where τµ are the bits connected to chip µ, and the chip Hamiltonian is

Hµ(τµ) = 1

2σ 2
0

−
L̃∑

i=1

ξiτi + yµ

2

, (10)

labelling each interacting (nonzero) component on the chip by i, with L̃ being the chip
connectivity.

Working from this description we wish to compare the performance of ensembles with
different chip connectivities. To do this we consider the ensemble average mutual information
by averaging the mutual information over the connectivities (L̃), load factors and transmitted
bits. This average is complicated; however, it is possible to calculate the dominant terms in
the low and high PSD limits.

In the case of low noise (PSD → ∞) we find the asymptotically dominant terms come
first from the numerator

〈log2 exp −H(τµ)〉 .=
〈

ω2

2σ 2
0

〉/
log(2) = 1

2 log(2)
, (11)

which is an average over the ground state energy and also the logarithm of the denominator
which is〈

log2

∑
τµ

exp −H(τµ)

〉
.=
〈

log2

[∑
τµ

exp

(−ω2

2σ 2
0

)
δ

(∑
i

ξi(bi − τi)

)]〉
, (12)

where yµ has been decomposed into its bit ({bi}) and noise (ω) parts, and the averages are
now over the ensembles as well as yµ. The first part of (12) gives an energy contribution
cancelling (11). We call the remaining part the average over the chip entropy; by comparison
with (9) this determines the amount of information lost in decoding. The chip entropy term
contains an indicator function counting the ground states—the average chip entropy is zero
when τµ = bµ is the only solution. For the case of BPSK, however, there may be some
degeneracy in ground states with two terms in the sum being nonzero but cancelling one
another. This degeneracy has a dependence on the distribution P(L̃) for given L. Averaging
over load factors and transmitted bits we find that in the zero noise limit

I (τ , yµ)
.= L −

〈
1

22L̃

∑
ξµ

∑
bµ

log2

∑
τµ

δ

(∑
i

ξi(bi − τi)

)〉
P(L̃)

, (13)

= L −
〈

L̃∑
p=0

1

2L̃

(
L̃

p

)
ln

(
min(p,L̃−p)∑

i

(
L̃ − p

i

)(
p

i

))〉
P(L̃)

. (14)



Sparsely spread CDMA—a statistical mechanics-based analysis 12321

By the numerical evaluation of this function (see results section 4.2) we find that the optimal
ensemble is in fact the regular ensemble. This is because chip entropy, when averaged over
load factors and bits, is a concave function in L̃, so that the information loss is minimized
when P(L̃) = δL,L̃. This dependency on L̃ may be a peculiarity of the detector considered,
but many other aspects of the calculation may be generalized to give a similar result.

It is possible to consider the opposite limit σ 2
0 → ∞ perturbatively. We found that the

leading four orders in 1/σ0 were identical for all code ensembles of the same mean chip
connectivity. We would anticipate the behaviour at non-extreme PSD to fall somewhere
between these two regimes and thus for the chip regular ensemble to be at least as good as the
chip irregular ensembles.

3.2. Replica method outline

We determine the static properties of our model defined in section 2 equilibrium by the replica
method. From the expression of the Hamiltonian (3) we may identify a free energy and
partition function as

f = − 1

Nβ
ln Z Z = Trτ exp (−βH(τ )) .

To progress we make use of the anticipated self-averaging properties of the system.
The assumption being that in the large system limit any two randomly selected instances
will, with high probability, have indistinguishable statistical properties. This assumption
has firm foundation in several related problems [14], and is furthermore intuitive after some
reflection. If this assumption is true then the statistics of any particular instance can be
described completely by the free energy averaged over all instances of the disorder. We are
thus interested in the quantity

F = 〈f 〉 = − lim
N→∞

1

Nβ
〈ln Z〉I , (15)

where the angled brackets represent the weighted averages over I (the instances). The entropy
density may be calculated from the free energy density by use of the relation

s = β(e − f ), (16)

where e is the energy density.
To determine the free energy we must average over disorder in (15), which is a difficult

problem except in special cases. This is why we make use of the replica identity

〈ln Z〉I = lim
n→0

∂

∂n
〈Zn〉I . (17)

We can model the system now as one of interacting replicas, where Zn is decomposed as
a product of an integer number of partition functions with conditionally independent (given
the instance of the disorder) dynamical variables. The discreteness of replicas is essential in
the first part of the calculation, but a continuation to the real numbers is required in taking
n → 0+—this is a notorious assumption, which rigourous mathematics cannot yet justify
for the general case, in spite of the progress made in recent years [15–17]. However, we
shall assume validity and since the methodology for the sparse structures is well established
[14, 18, 19] we omit our particular details. The final functional form for the free energy is
determined from

〈Zn〉 =
∫ ∏

σ,b

[dP(b, σ) dP̂ (b, σ)] exp{lnN + N(G1(n) + G2(n) + G3(n))}, (18a)



12322 J Raymond and D Saad

G1(n) = ln


∫ [∏

α

dλα√
2π

]
exp

{
−
∑

α

λ2
α

/
2

}〈
exp

{
i
√

βω

σ0

∑
α

λα

}〉
�(ω)

×
〈

e−L

∑
b,σ

P(b, σ)

〈
exp

{
i
√

βξ

σ0

∑
α

λα(b − τα)

}〉
φ(ξ)

L̃〉
P(L̃)

 , (18b)

G2(n) =
∑
σ,b

P (b, σ)P̂ (b, σ), (18c)

G3(n) = α ln

〈∑
τ

exp

{
βH

∑
α

τα

}〈
1

(−L)C̃
(P̂ (b, τ ))C̃

〉
P(C̃)

〉
P0(b)

, (18d)

where N is a constant due to normalizing the ensembles (5). This expression may be evaluated
at the saddle point to give an expression for the free energy. In term (18d) we account for
the cases in which the marginalized probability distribution P0(b) and assumed marginal
probability distribution (described by H) are asymmetric. In the case of maximal rate which
we will consider, the b average is trivial and H = 0. Provided that in addition the gain
factor distribution is symmetric then it is possible to remove the b dependence in the order
parameters, since the symmetry P(b, σ) = P(−b,−σ) and P̂ (b, σ) = P̂ (−b,−σ) leaves
the free energy invariant.

3.3. Replica symmetric equations

The concise form for our equations is attained using the assumption of replica symmetry
(RS). This amounts to the assumption that the correlations amongst replicas are all identical
and determined by a unique shared distribution. The validity of this assumption may be
self-consistently tested (section 3.5). This assumption differs from that used by Yoshida and
Tanaka [2] where the correlations are described by only a handful of parameters rather than
a distribution once RS is assumed; this approach may therefore miss some of the detailed
structure, although it is easier to handle numerically. The order parameter in our case is given
by

P(b, τ ) = 1

2

∫
dπ(x)

∏
α

(
1

2
(1 + bταx)

)
(19a)

P̂ (b, τ ) = q̂

∫
dπ̂ (x̂)

∏
α

(1 + bταx), (19b)

where q̂ is a variational normalization constant and π, π̂ are normalized distributions on the
interval [−1, 1]. From here onwards we may consider the case in which the bit variables τα

and gain factors ξ are gauged to b (τb → τ, ξb → ξ).
Using Laplace’s method, this gives the following expression for the (RS) free energy at

the saddle point:

FRS = − 1

β
Extrπ,π̂

∂

∂n
(G1,RS(L̃)(n) + G2,RS(n) + G3,RS(C̃)(n)), (20)
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where

∂

∂n

∣∣∣∣
n=0

G1,RS(n)
.= −L ln 2 +

〈∫ L̃∏
l=1

[dπ(xl)]
〈
ln Tr{τl=±1}χL̃(τ ; {ξ}, ω, {x})〉

ω,{ξ}

〉
P(L̃)

,

(21a)

χL̃(τ ; {ξ}, ω, {x}) = exp

− β

2σ 2

ω +
L̃∑

l=1

(1 − τl)ξl

2
 L̃∏

l=1

(1 + τlxl), (21b)

∂

∂n

∣∣∣∣
n=0

G2,RS(n) = −L

∫
dπ(xc) dπ̂ (x̂c) ln(1 + xx̂c), (21c)

∂

∂n

∣∣∣∣
n=0

G3,RS(n) = α

〈 ∫ C̃∏
c=1

[
dπ̂ (x̂c)

]
ln

 C̃∏
c=1

(1 + x̂c) +
C̃∏

c=1

(1 − x̂c)

)〉
P(C̃)

, (21d)

and the saddle point value for ŵ (= −L) has been introduced. The averages over L̃ and C̃

encapsulate the differences amongst the ensembles.
Equation (21b) describes the interaction at a single chip in the factor graph (figure 1) of

connectivity L̃. The parameter ξl and variable τ are the gain factors, and reconstructed bits
respectively, both gauged to the transmitted bit, while ω is the instance of the chip noise.

The order variational distributions {π, π̂} are chosen so as to extremize (20). The self-
consistent equations attained by the saddle point method are

π̂(x̂) =
〈∫ L̃∏

l=1

[dπ(xl)]

〈
δ

(
x̂ − Tr{τl=±1}τL̃+1χ̄L̃(τ ; {ξ}, {x̂})

Tr{τl=±1}χ̄L̃(τ ; {ξ}, ω, {x})
)〉

�(ω),φ(ξ)

〉
P(L̃)

(22a)

χ̄L̃(τ ; {ξ}, ω, {x}) = exp

− β

2σ 2

ω +
L̃+1∑
l=1

(1 − τl)ξl

2
 L̃∏

l=1

(1 + τlxl) (22b)

π(x) =
〈∫ C̃∏

c=1

[dπ̂ (x̂c)] δ

(
x −

∏C̃
c=1(1 + x̂c) −∏C̃

c=1(1 − x̂c)∏C̃
c=1(1 + x̂c) +

∏C̃
c=1(1 − x̂c)

)〉
P(C̃)

. (22c)

The variables P(L̃) and P(C̃) are here the excess degree distributions of the particular
ensemble (5). For regularly constrained ensembles the chip and user excesses are L − 1 and
C−1 respectively. For Poissonian distributions the excess degree distribution is the full degree
distribution.

Aside from entropy, the other quantities of interest may be determined from the probability
distribution for the overlap of reconstructed and sent variables mk = 〈τk〉,

P(m) = lim
K→∞

1

K

〈
K∑

k=1

δmk,m

〉
I

, (23)

=
〈∫ C̃∏

c=1

[dπ̂(x̂c)] δ

(
m −

∏C̃
c=1(1 + x̂c) −∏C̃

c=1(1 − x̂c)∏C̃
c=1(1 + x̂c) +

∏C̃
c=1(1 − x̂c)

)〉
P(C̃)

. (24)
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We note finally that equivalent expressions to these found with the RS assumption may
be obtained by using the cavity method [6] with the assumption of a single pure state. This
approach is a probabilistic one and hence more intuitive on some levels.

3.4. Population dynamics

Analysis of these equations is primarily constrained by the nature of equations (22a)–(22c).
No exact solutions are apparent, and perturbative regimes about the ferromagnetic solution
(which is only a solution for zero noise) are difficult to handle. Consequently we use population
dynamics [20], representing the distributions {π(x), π̂(x̂)} by finite populations (histograms)
and iterating this distribution until convergence. It is hoped, and observed, that each histogram
captures sufficient detail to describe the continuous function and the dynamics (described
below) allow convergence towards a true solution distribution with only small corrections due
to finite size effects.

To solve equations (22a), (22c) with population dynamics finite histograms constructed
from M undirected ‘cavity’ magnetizations are used. Histograms approximating each function
are formed

π(x) → W = {x1, . . . , xi, . . . , xM}, (25a)

π(x̂) → Ŵ = {x̂1, . . . , x̂a, . . . , x̂M}, (25b)

with M sufficiently large to provide good resolution in the desired performance measures. The
discrete minimization dynamics of the histograms is derived from (22a)–(22c). Histogram
updates are undertaken alternately, with all magnetization in the histogram being updated
sequentially. In the update of field xa the quenched parameters {L̃, ω, ξ} are sampled, L̃ being
the chip excess degree and L̃ magnetizations are randomly chosen from W , defining through
(22a) the update

x̂a = Tr{τl=±1}τL̃+1χ̄L̃(τ ; {ξ}, ω, {x})
Tr{τl=±1}χ̄L̃(τ ; {ξ}, ω, , {x}) . (26)

The update of the other histogram follows dynamics in which C̃ is sampled, C̃ being the user
excess degree, along with C̃ randomly chosen magnetizations from Ŵ , defining through (22c)
the update

xi =
∏C̃

c=1(1 + x̂c) −∏C̃
c=1(1 − x̂c)∏C̃

c=1(1 + x̂c) +
∏C̃

c=1(1 − x̂c)
. (27)

There is a strong analogy between the population dynamics algorithm and that of message
passing on a particular instance of the graph. The iteration of the histograms implicit in (26)–
(27) is analogous to the propagation of a population of cavity magnetizations between factor
(a) and user (i) nodes, which may be written as the self-consistent equations

x̂a→i = 1

Nx̂

Tr{τl=±1}τi exp

− β

2σ 2

(
ωa +

∑
l∈∂a�i

(1 − τl)Sal

)2
 ∏

l∈∂a�i

(1 + τlxl→a), (28a)

xi→a = 1

Nx

( ∏
c∈∂i�a

(1 + x̂c→i ) −
∏

c∈∂i�a

(1 − x̂c→i )

)
, (28b)

where Nx,x̂ are the relevant normalizations, and the abbreviation ∂y indicates the set of nodes
connected to y. In population dynamics, the notion of a particular graph with labelled edges
is absent, however, and only the distribution of the two types of magnetizations is relevant.
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3.5. Stability analysis

To test the stability of the obtained solutions we consider both the appearance of non-negative
entropy and a stability parameter defined through a consideration of the fluctuation dissipation
theorem. The first criterion that the entropy be non-negative is based on the fact that physically
viable solutions in discrete systems must have non-negative entropy, so that any solution found
not meeting this criterion must be based on bad premises; replica symmetry is a likely source.

The stability parameter λ is defined in connection with the cavity method for spin glasses
[21] and tests local stability of the solutions. It is equivalent to testing the local stability
of belief propagation equations as proposed in [22]. A necessary condition for the stability
of the RS solution is that the corresponding susceptibility does not diverge. This condition
ensures that fields are not strongly correlated. The spin glass susceptibility when averaged
over instances may be defined

ζ =
∞∑

d=0

Xd
〈〈τ0τd〉2

c

〉
, (29)

where d is the distance between two nodes in the factor graph, the inner average denotes
the connected correlation function between these nodes, Xd describes the typical number of
variables at distance d and the outer average is over instances of the disorder (self-averaging
part). This quantity is not divergent provided that

λ = ln

[
lim

d→∞
X
〈〈τ0τd〉2

c

〉 1
d

]
(30)

is negative, since this indicates an asymptotically exponential decrease in the terms of (29)
and hence convergence of the sum. In the thermodynamic limit, the connected correlation
function is dominated by a single direct path which may be decomposed as a chain of local
linear susceptibilities

〈τ0τd〉c ∝
∏
(i,j)

∂xi→a

∂x̂b→i

∂x̂b→i

∂xj→b

, (31)

where (i, j) indicate the set of variables on the shortest path between nodes 0 and d in a
particular instance of the graph (28a).

This representation allows us to construct an estimation for λ, numerically based on
principles similar to population dynamics [23]; the directedness and fixed structure implicit
in a particular problem is removed with the self-averaging assumption leaving a functional
description similar to (22a)–(22c), which may be iterated. In order to approximate the
stability parameter λ, one introduces additional positive numbers in the population dynamics
histograms (25b), (25a), xi → {xi, vi} and x̂a → {x̂a, v̂a} respectively. These new values
represent the relative sizes of perturbations in each magnetization, and are updated in parallel
to (26), (27) as

v̂a =
L̃∑
j

vj

(
∂x̂a

∂xj

)2

, (32)

and with similar assignments for the field update of W

vi =
C̃∑
j

v̂a

(
∂xi

∂x̂a

)2

. (33)

The partial derivatives are calculated from (26)–(27) and evaluated at the corresponding values
in the sampled population. If the final fixed point is stable against small perturbations in the
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initial field then these values {v, v̂} must decay exponentially on average. Renormalization
of {vi} and {v̂a} such that the mean is 1 after each update is necessary. The numerical
renormalization constant for each population yields (dependent) estimations of λ, which can
be sampled at a suitable convergence time (end of the {W, Ŵ } minimization process).

Like population dynamics we expect behaviour to be sensitive to initialization conditions
and finite size effects in some circumstances. In addition, the estimation requires good
resolution in the histograms W and Ŵ .

4. Results

Results are presented here for the canonical case of binary phase shift keying (BPSK), where
ξl ∈ {1,−1} with equal probability. Furthermore, we assume an AWGN model for the true
noise ω (of variance σ 2

0 ). For evaluation purposes we assume that the channel noise level is
known precisely, so that β = 1, employing the Nishimori temperature [5]. This guarantees
that the RS solution is thermodynamically dominant. Furthermore, the energy takes a constant
value at the Nishimori temperature and hence the entropy is affine to the free energy. Where
of interest we plot the comparable statistics for the single user Gaussian channel (SUG), and
the densely spread ensemble, each with MPM detectors—equivalent to maximum likelihood
for individual bits.

For population dynamics two parallel populations (25a), (25b) are initialized either
uniformly at random, or in the ferromagnetic state. These two populations are known to
converge towards the unique solution, where one exists, from opposite directions, and so we
can use their convergence as a criterion for halting the algorithm and testing for the appearance
of multiple solutions. In the case where they converge to different solutions we can usually
identify the solution converged to from the ferromagnetic initial state as a good solution—in
the sense that it reconstructs well, and that arrived at from a random initial state as a bad
solution. In the equivalent belief propagation algorithm one cannot choose initial conditions
equivalent to ferromagnetic—knowing the exact solution would of course make the decoding
redundant. We therefore expect the properties of the bad solution to be those realizable by
belief propagation (though clever algorithms may be able to escape to the good solution under
some circumstances). The stability variables {v, v̂} were initialized independently each as the
square of a value drawn from a Gaussian distribution, and tests indicated other reasonable
distributions produced similar results.

Computer resources restrict the cases studied in detail to an intermediate PSD regime, and
small L. In particular, the problem at low PSD, is the Gaussian noise average, which is poorly
estimated, while at high PSD a majority of the histogram is concentrated at magnetizations
x, x̂ ≈ 1 not allowing sufficient resolution in the rest of the histogram.

Several different measures are calculated from the converged order parameter, indicating
the performance of sparsely spread CDMA. Using the converged histograms for the fields
we are able to determine the following quantities: free energy, energy and a histogram for
the probability distribution, from discretizations of the previously presented equations (22a)–
(22c). Using the probability distribution we are also able to approximate the decoding bit-error
rate

Pb =
∫

dP(m)
1 − sign(m)

2
; (34)

multi-user efficiency

MuE = 1

SNR
[erfc−1(Pb)]

2; (35)
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and mutual information between sent and reconstructed bits per chip, I (b; τ )/N (taking a
factorized form given the RS assumption)

MI = α

(
1 −

∫
dP(m)

∑
τ

1 + τm

2
log2

1 + τm

2

)
. (36)

The spectral efficiency is the capacity I (τ ;y) per chip, which is affine to the entropy (and the
free energy at the Nishimori temperature)

ν = α − s/ ln 2. (37)

Negative entropy can be identified when the measured spectral efficiency exceeds the load,
and thermodynamic transition points correspond to points of coincident spectral efficiency.

Figure 2 demonstrates some general properties of the regular ensemble in which the
variable and factor degree connectivities are C : L = 3 : 3, respectively. Equations (22a)–
(22c) were iterated using population dynamics, and the relevant properties were calculated
using the obtained solutions; the data presented are averaged over 100 runs and error bars,
which are typically small, are omitted for brevity. Figure 2(a) shows the bit-error rate in regular
and Poissonian codes; the inset focuses on the range where the sparse-regular and dense cases
crossover. The sparse codes demonstrate similar trends to the dense case except the irregular
code, which show weaker performance in general, and in particular at high PSD. Detailed
trends can be seen in figure 2(b) that shows the multiuser efficiency. Codes with regular user
connectivity show superior performance with respect to the dense case at low PSD. Figure 2(c)
shows similar trends in the spectral efficiency and mutual information (shown in the inset); the
effect of the disconnected (user) component is clear in the fact that the irregular code fails to
reach capacity at high noise levels. In general, it appears that the chip connectivity distribution
is not critical in changing the trends present, unlike the user connectivity distribution. It was
found in these cases (and all cases with unique solutions for given PSD) that the algorithm
converged to non-negative entropy values and to a stability measure fluctuating about a value
less than 0, as shown in figure 2(d ). These points would indicate the suitability of the RS
assumption.

The outperformance of dense codes by sparse ensembles with regular user connectivity is
new to our knowledge. It also appears that Poissonian chip connectivity outperforms regular
connectivity at low PSD. These facts indicate that it may be the effect of locality in the graph;
the instance of noise experienced is not homogeneous for all users and this allows effective
reconstruction in some neighbourhoods. The effect of these neighbourhoods must mitigate
for the poor performance in other neighbourhoods with high instances of noise. In the dense
graph the noise level experienced is homogeneous, in the regular ensemble the core is well
connected but with a notion of neighbourhood, and in the Poissonian chip connectivity case
there are many neighbourhoods which are relatively isolated. This effect would be most
pronounced in disconnected ensembles, TH/FH CDMA, which is why these are effective at
rebuffing jamming and other types of interference. This explanation is further supported by
experiments with increasing (connection) density at fixed α for all ensembles (figure 3).

Figure 3 indicates the effect of increasing density at fixed α in the case of the regular code.
As density is increased the statistics of the sparse codes approach that of the dense channel
in all ensembles tested. For the irregular ensemble, performance increases monotonically
with density at all PSD. The rapid convergence to the dense case performance was elsewhere
observed for partly regular ensembles, and ensembles based on a Gaussian prior input [2, 7].
At all densities for which single solutions were found, the RS assumption appeared validated
in the stability parameter and entropy.

Figure 4 indicates the effect of channel load α on performance. We first explain results
for codes in which only a single solution was found (no solution coexistence). For small
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Figure 2. Performance of the sparse CDMA configuration of variable and factor degree
connectivities C : L = 3 : 3, respectively; all data presented on the basis of 100 runs, error
bars are omitted and are typically small in subfigures (a)–(c) the smoothness of the curves being
characteristic of this level (numerical accuracy was excellent only at intermediate PSDs). (a) The
bit-error rate is limited by the disconnected component in the case of irregular codes, otherwise
trends match the dense case, lower bounded by the SUG. Inset - the range where the sparse-
regular and dense cases crossover. (b) Multiuser efficiency indicates the regular user connectivity
codes outperform the dense case below some PSD. (c) The spectral efficiency [——] demonstrates
similar trends, the entropy being positive. The gap between the mutual information [· · · · · ·] and
spectral efficiency (shown in the inset) is everywhere small and especially so at small and large
PSD, indicating little information loss in the decoding process. (d ) The two markers show the
mean results for the two different stability estimates in the algorithm for the regular code. There
are systematic errors at small PSD, and convergence is good only at intermediate PSD. The lines
represent the average of these quantities for each ensemble—all ensembles show a cusp at some
PSD; for 3 : 3 codes the various ensembles show very similar trends, indicating local stability
everywhere.

values of the load a monotonic increase in the bit-error rate and capacity are observed as α is
increased with a constant C, as shown in figures 4(a) and (b), respectively. This matches the
trend in the dense case, the dense code becoming superior in performance to the sparse codes
as PSD increases. We found that for all sparse ensembles there existed regimes with α > 1.49
for which only a single stable solution existed, although the equivalent dense systems are
known to have two stable solutions in some range of PSD [3]. In all single-valued regimes,
we observed positive entropy and a negative stability parameter. However, in cases of large α
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Figure 3. The effect of increasing density for the regular ensemble: (a) multiuser efficiency,
(b) spectral efficiency [——] and mutual information [– – –]. Data presented on the basis of 10
runs, error bars are omitted but of a size comparable with the smoothness of the curves. The
performance of sparse codes rapidly approaches that of the dense code everywhere. The PSD
threshold beyond which the dense code outperforms the sparse code is fairly stable.

many features became more pronounced close to the dense case solution coexistence regime:
notably the cusp in the stability parameter, gap between MI and ν and the gradient in Pb.

4.1. Solution coexistence regimes

As in the case of dense CDMA [3], also here we observe a regime where two solutions of quite
different performance coexist. In order to investigate the regime where two solutions coexist,
we investigated the states arrived at from random and ferromagnetic initial conditions (giving
bad and good solutions respectively). Separate heuristic convergence criteria were found for
the histograms, and these seemed to work well for the good solution. For the bad solution,
we simply present results after a fixed number of histogram updates (500) as all convergence
criteria tested appeared either too stringent to require experimentally inaccessible timescales,
or did not capture the asymptotic values for important quantities like entropy. We believe 500
updates to be sufficiently conservative to capture the properties of these solutions however.

Figure 4(a) shows the dependence of the bit-error rate on the load, which is also equivalent
to L/C. There is a monotonic increase in the bit-error rate with the load and the emergence
and coexistence of two separate solutions above a certain point; in the case of the 6 : 3 code,
the point above which the two solutions coexist is PSD = 10.23 dB as indicated by the vertical
dotted line.

We use the regular code 6:3 to demonstrate the solution coexistence found above some PSD
in various codes. The onset of the bimodal distribution can be identified by the divergence
in the convergence time in the single solution regime (the time for the ferromagnetic and
random histograms to converge to a common distribution). The time for this to occur, in a
heuristically chosen statistic and accuracy, is plotted in figure 4(b). By a naive linear regression
across three decades, we found a power law exponent of 0.59 and a transition point of PSD =
10.23 dB, but cannot provide a goodness of fit measure to these data. This would represent
the point at which at least two stable solutions coexist.

Beyond PSD ≈ 12 dB only one stable solution is found from both random and
ferromagnetic initial conditions, corresponding statistically to a continuation of the good
solution. A solution which statistically resembles a continuation of the bad solution is
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Figure 4. The effect of channel load α on performance for the regular ensemble. Data presented
on the basis of 10 runs, error bars omitted but characterized by the smoothness of curves. Dashed
lines indicate the dense code analogues. The vertical dotted line indicates the point beyond which
6 : 3 random and ferromagnetic initial conditions failed to converge to the same solution, both
dynamically stable solutions are shown beyond this point. (a) There is a monotonic increase in
bit-error rate with the increasing load. (b) Investigation of the 6 : 3 code (α = 2) indicates a
divergence in convergence time as PSD → 10.23 dB with exponent 0.59 based on a simple linear
regression of 15 points (each point is the mean of 10 independent runs). Beyond this point different
initial conditions give rise to one of two solutions. (c) The stability parameter was found to be
negative for all convergent solutions, indicating the suitability of RS. Where the solution is near
ferromagnetic the stability measure becomes quickly very noisy (as shown for the 5 : 3 and 6 : 3
codes). (d ) As load α is increased there is a monotonic increase in capacity. The spectral efficiency
for the ‘bad’ solution exceeds 2 in a small interval (equivalent to negative entropy), similar to the
behaviour reported for the dense case.

occasionally arrived at from both initial conditions; this solution had a positive stability
parameter and negative entropy—so is not a viable solution. Thus we predict a second
dynamical transition in the region of 12 dB, as might be guessed by comparison with the dense
case and observation of the trend in the stability parameter (see figure 4(c)).

The stability results are presented in figure 4(c). Only two stable solutions were found in
the region beyond this critical point and upto 12 dB, which we infer to be viable RS solutions
(where entropy is positive). The bad solution upto 12 dB has a well-resolved negative value.
The good solution has a negative value in its mean, but like other near ferromagnetic solutions
investigated results are very noisy due to numerical issues relating to histogram resolution.
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Both capacity and spectral efficiency monotonically increase with the load as shown in
figure 4(d ). For the 6:3 code, we see a separation of the two solutions at PSD = 10.23 dB
(vertical dotted line). The dashed lines correspond to a similar behaviour observed in the
dense case (the range of interest is magnified in the inset). A crossover in the entropy of the
two distinct solutions, near PSD ≈ 11 dB, is indicative of a second-order phase transition.
As in the dense case, only the solution of smallest spectral efficiency is thermodynamically
relevant at a given PSD, although the other is likely to be important in decoding dynamics.
The trends in the sparse case follow the dense case qualitatively, with the good solution having
performance only slightly worse than the corresponding solution in the dense case (and vice
versa for the bad solution).

The entropy of the bad solution becomes negative in a small interval (spectral efficiency
exceeds 2), although no local instability is observed. The static and dynamic properties of the
histograms appear to be well resolved in this region. However, the negative entropy indicates
an instability towards either a type of solution not captured within the RS assumption, or
towards some metastable configuration. We will not speculate further; the bad solution is in
any case thermodynamically subdominant in its low and negative entropy form.

Our hypothesis is therefore that the trends in the sparse ensembles match those in the dense
ensembles within the coexistence region, and RS continues to be valid for each of two distinct
positive entropy solutions. The coexistence region for the sparse codes is however smaller
than in the corresponding dense ensembles. Since our histogram updates mirror the properties
of a belief propagation algorithm on a random graph, we can suspect that the bad solution
may have implications for the performance of belief propagation decoding in the coexistence
region and that convergence problems will appear near this region. In the user regular codes
investigated, the bad solution of the sparse ensemble outperforms the bad solution of the dense
ensemble, and vice versa for the good solution. Thus regardless of whether sparse decoding
performance is good or bad, the dynamical transition point for the dense ensemble would
correspond to a PSD beyond which dense CDMA outperforms sparse CDMA at a particular
load.

4.2. Spectral efficiency lower bound numerical results

Finally, we present figure 5, which shows the mutual information between a single chip and
transmitted bits for sparse ensembles of differing chip connectivity in the infinite PSD (zero
noise) limit (14). This shows that in expectation a chip drawn from the regular ensemble
contains more information on the transmitted bits than a chip drawn from any other ensemble
(including the Poissonian ensemble). The difference between the regular and Poissonian
ensembles becomes relatively smaller as L increases. This appears consistent with the replica
method results found at high PSD, although regular chip connectivity under performed by
comparison with Poisson-distributed chip connectivity in the low PSD regime, which was not
anticipated by the single chip approximation.

5. Concluding remarks

Our results demonstrate the feasibility of sparse regular codes for use in CDMA. At moderate
PSD it seems that the performance of sparse regular codes may be very good. With the replica
symmetric assumption apparently valid at practical PSD, it is likely that fast algorithms
based on belief propagation may be very successful in achieving the theoretical results.
Furthermore, for lower density sparse codes the problem of the coexistence regime, which
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Figure 5. A PSD → ∞ limit to the expected mutual information between a single chip and the
transmitted bits. Mutual information is highest for regular chip connectivities, with the Poissonian
chip connectivity result also shown, the discrepancy becoming relatively small as L increases. The
inset shows the mutual information/bit decoded (〈I (τ ; yµ)〉/L) on a log–log plot to demonstrate
an asymptotic power law behaviour and shows more detail in the cases of small L.

limits the performance of practical decoding methods, seems to be less pervasive than for
dense ensembles in the over-saturated regime.

A direct evaluation of the properties of belief propagation may prove similar results to
those shown here. In the absence of replica symmetry breaking states it is normally true that
belief propagation performs very well. However, to make best use of the channel resources it
may be preferable to implement high load regimes in cases of high PSD, and so overcoming
the algorithmic problems arising from the solution coexistence is a challenge of practical
importance in this case.

Other practical issues in implementation are certainly significant. Similar to the case of
dense CDMA there are considerable problems relating to multipath, fading and power control;
in fact it is known that these effects are more disruptive for the sparse codes, especially
regular codes. However, certain situations such as broadcasting (one to many) channels and
downlink CDMA, where synchronization can be assumed, may be practical points for future
implementation. There are practical advantages of the sparse case over dense and orthogonal
codes in some regimes. The sparse CDMA method is likely to be particularly useful in
frequency-hopping and time-hopping code division multiple access (FH- and TH-CDMA)
applications where the effect of these practical limitations is less emphasized.

Extensions based on our method to cases without power control or synchronization have
been attempted and are quite difficult. A consideration of priors on the inputs, in particular the
effects when sparse CDMA is combined with some encoding method, may also be interesting.
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